
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tinw20

Inland Waters

ISSN: 2044-2041 (Print) 2044-205X (Online) Journal homepage: https://www.tandfonline.com/loi/tinw20

Size, age, renewal, and discharge of groundwater
carbon

John A. Downing & Robert G. Striegl

To cite this article: John A. Downing & Robert G. Striegl (2018) Size, age, renewal, and discharge
of groundwater carbon, Inland Waters, 8:1, 122-127, DOI: 10.1080/20442041.2017.1412918

To link to this article:  https://doi.org/10.1080/20442041.2017.1412918

© 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 15 Jan 2018.

Submit your article to this journal 

Article views: 627

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tinw20
https://www.tandfonline.com/loi/tinw20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/20442041.2017.1412918
https://doi.org/10.1080/20442041.2017.1412918
https://www.tandfonline.com/action/authorSubmission?journalCode=tinw20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tinw20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/20442041.2017.1412918&domain=pdf&date_stamp=2018-01-15
http://crossmark.crossref.org/dialog/?doi=10.1080/20442041.2017.1412918&domain=pdf&date_stamp=2018-01-15


Inland Waters, 2018
VOl. 8, nO. 1, 122–127
https://doi.org/10.1080/20442041.2017.1412918

RESEARCH BRIEF

Size, age, renewal, and discharge of groundwater carbon

John A. Downinga and Robert G. Strieglb

aUniversity of Minnesota duluth, Minnesota sea Grant College Program, department of Biology, large lakes Observatory, duluth, Mn, Usa; 
bUnited states Geological survey, national research Program, Boulder, CO, Usa

ABSTRACT
Groundwater carbon (C) supply to lakes and streams is important to understanding the role of 
inland waters in global and regional cycles and in the functioning of aquatic ecosystems. We provide 
new estimates of the size and discharge of the groundwater C pool using data from a broad survey 
of groundwater C, information on the depth distribution of groundwater, and data on groundwater 
age. About 0.25 × 106 km3 of the 8 × 106 km3 of groundwater resource is within 100 m of the surface 
and 4.2 × 106 km3 is above 2000 m. Ages show an average groundwater turnover time of 10 yr 
at 25 m, 350 yr at 100 m, increasing to about 100 000 yr at 600 m. Global groundwater discharge 
is 16 000 km3 yr−1; >16% of precipitation passes through groundwater. Groundwater dissolved 
organic C (DOC) can be high in shallow groundwater but stabilizes at ~2–4 mg L−1 at 100 m. Average 
groundwater dissolved inorganic C (DIC) is ~30–43 mg L−1. Groundwater C content to 2000 m is 
~145 Pg, about the same as all marine sediments and about one-sixth that of the surface ocean. 
Groundwater C discharge to continental waters is 0.68 Pg yr−1, or 3.4 times that estimated from river 
base-flow and submarine groundwater discharge. This discharge is 68 times previous estimates, 
implying a total C flux from land of 3.6 Pg yr−1; 80% of discharge occurs from above 40 m and 99% 
from the upper 100 m.

Introduction

Groundwater carbon (C) supply to lakes (e.g., Hanson  
et al. 2014) and streams (e.g., Oviedo-Vargas et al. 2015) is 
essential to understanding the role of inland waters in the 
global C cycle but is poorly constrained in global analyses 
(e.g., Cole et al. 2007). Groundwater makes up much of the 
liquid water on the continents and may contain substantial 
C, yet little is known about the quantity or composition of 
this C, the global role of groundwater in the C budget, or 
its rate of discharge to surface waters. Predicting changes 
in atmospheric carbon dioxide (CO2) and the course of 
climate change relies on complete and accurate estimates 
of the sizes and rates of exchange of all global C pools. 
In addition to global analyses, groundwater C is increas-
ingly implicated in regional C cycling (Genereux et al. 
2013, Olefeldt et al. 2013). Currently, both the size and 
turnover time of the global groundwater C pool (Cole et 
al. 2007) and the influence of human domestic, indus-
trial, and agricultural groundwater withdrawal on global 
C cycling are unknown. Poorly constrained estimates 
hamper understanding of the role of groundwater and 

human groundwater withdrawals in inland water func-
tions, global C budgets, and global climate change.

Groundwater volume at a given depth is the prod-
uct of the total volume of sediments and the fraction of 
groundwater found in the pore spaces within sediments. 
No published depth-dependent assessments of ground-
water and groundwater C distribution exist from which 
to determine global groundwater C and C flux. Published 
estimates of the volume of the global groundwater 
resource vary between 8 and 330 million km3 (Garrels 
and MacKenzie 1971, Gavrilenko and Derpgol’ts 1971, 
L’vovich 1974, Southam and Hay 1981, Schlesinger 1991, 
1997, Clarke 1993, Alley et al. 2002, Shiklomanov and 
Rodda 2003, Trenberth et al. 2007). Because methods in 
older publications are vague, unspecified, and imply an 
impossibly large porosity, we have more confidence in 
modern estimates that cluster from 8 to 23.4 million km3 
(Clarke 1993, Shiklomanov and Rodda 2003, Trenberth 
et al. 2007). Groundwater flux and recharge are somewhat 
better known via GIS, hydrologic models, and independ-
ent seepage measurements (Döll and Fiedler 2008) and 
likely are 12 660 km3 yr−1. Groundwater C content has not 
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(Fig. 1 legend) and included observations from several 
countries and conditions. These ages were determined 
using a variety of isotopes appropriate to the age ranges 
analyzed (Suckow 2014). We determined the average 
age at various depths by smoothing the depth versus 
groundwater age relationship using locally weighted 
sequential smoothing (LOWESS; Cleveland 1979; Fig. 
1a). Predicted LOWESS fits were averaged across ranges 
of depths for which C measures could also be averaged. 
The annual renewal rate and thus the rate of discharge 
of groundwater from each 1 m stratum in a given year 
was calculated, assuming groundwater equilibrium, as 
the inverse of groundwater age. This fraction, multiplied 
by the volume of groundwater in each stratum, yielded 
an estimate of the rate of annual renewal by precipitation 
(Table 1).

Estimates of water volume and mean age of ground-
water at depth permit the equilibrium calculation of 
annual groundwater discharge to seeps, streams, lakes, 
and oceans. Data on dissolved organic (DOC) and inor-
ganic (DIC) C were derived from a wide-ranging survey 
across the diverse landforms of North America (http://
waterdata.usgs.gov/nwis/qw). Because of the diversity of 
landforms and geology covered, we believe these ground-
water C values are likely substantially similar to the con-
centrations and distribution beneath other continents. 
Measurements of groundwater DOC (e.g., Huang et al. 
2015, Thayalakumaran et al. 2015, Weigand et al. 2017) 
and DIC (e.g., Chaillou et al. 2014, Samanta et al. 2015, 
Cao et al. 2016) under other countries and continents, 
although rare, are in the same ranges as those in our 
survey. We determined the average C content at various 
depths by smoothing the depth versus groundwater age 
relationship using locally weighted sequential smoothing 
(Cleveland 1979) as described earlier. Predicted LOWESS 
fits were averaged across ranges of depths.

Results and discussion

The calculated volume of groundwater to a depth of 100 
m is about 0.25 × 106 km3 and to 2000 m is 4.2 × 106 km3 
(Table 1). Groundwater has an average turnover time of 
about 10 yr at 25 m, 350 yr at 100 m, 10 000 yr at 200 
m, and about 100 000 yr at 600 m. Average near-surface 
groundwater age matches published short turnover times 
(<10 yr; Alley et al. 2002), and the volume-weighted aver-
age age of groundwater to <800 m depth (29 000 yr) is 
within 30% of published values (Smith and Wheatcraft 
1993). Groundwater involved in hydrologic cycles and 
inland waters on the scale of years to centuries is gener-
ally shallower than ~200 m (Fig. 1a).

The groundwater content of DIC and DOC at depth 
were calculated via a large groundwater database covering 
the diverse landforms of North America and therefore 

been summarized globally, so estimates of the size of the 
groundwater C pool are conspicuously underrepresented 
in summaries of global C cycling (IPCC 2013).

The objective of this analysis was to calculate the vol-
ume and depth distribution of the groundwater resource 
beneath continents, estimate the C content of ground-
water using a database collected systematically on the 
diverse land forms across the United States, and, assum-
ing groundwater C content is generally similar across the 
globe, use groundwater age and depth distributions to 
approximate the global groundwater C turnover rate and 
flux to surface waters.

Methods

We calculated the exchangeable groundwater volume 
using a conservative global estimate of total groundwater 
beneath continents (Clarke 1993) and estimates of the 
depth distribution of groundwater derived from spher-
ical geometry and relationships between porosity and 
depth. The depth distribution profile of groundwater was 
estimated by calculating the volume of concentric hollow 
spheres with 1 m thickness with Earth’s radius (r) of 6371 
km. For example, the volume (V) of the first 1 m of the 
Earth is calculated as:

Concentric sphere volumes were calculated to a depth of 
8000 m below ground and then reduced to 29.2% to rep-
resent the area beneath landmasses. The volumes of Earth 
at each descending depth (Vp) were adjusted for porosity 
(p) or its inverse, “solidity,” following known depth–solid-
ity relationships (Baldwin and Butler 1985). Therefore, 
the volume of the potential pore space or groundwater 
volume in the first 1 m of the Earth is estimated by the 
following formula:

Estimated total groundwater volume in the pore-space 
of sediments down to about 8000 m range from 8.0 × 
106 to 330 × 106 km3 (Hay and Leslie 1990, Clarke 1993, 
Trenberth et al. 2007). A depth of 8000 m was used as a 
practical limit because the temperature of the Earth would 
make liquid water unlikely at greater depth, and porosity 
would be near zero (Hay and Leslie 1990). To make the 
most conservative estimate of groundwater and ground-
water C, we weighted the smallest of these estimates 
(Clarke 1993) by the calculated distribution of ground-
water from pore space and global geometry, down to 2000 
m assuming water below that depth would exchange at 
negligible rates.

We assessed groundwater ages at different depths (Fig. 
1a) and annual rates of renewal. Groundwater age-at-
depth was characterized from multiple published sources 

V = (4∕3πr3) − (4∕3π(r − 1)3).

0.292Vp.

http://waterdata.usgs.gov/nwis/qw
http://waterdata.usgs.gov/nwis/qw
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Figure 1.   depth distribution of groundwater age and dIC and dOC concentrations: (a) groundwater <1000 m from the surface; (b) 
histogram of dIC and dOC concentrations; and (c) to greater depths. lines are fitted using lOWess. age estimates (yr) are from multiple 
published sources (elliott 1990, 2000, elliott et al. 1999, Manga 1999, edmunds and smedley 2000, Iwatsuki et al. 2001, Katz et al. 2001, 
Plummer et al. 2001, 2000, swanson et al. 2001, swarzenski et al. 2001, dowling et al. 2003, Chen et al. 2003, sturchio et al. 2004).

Table 1. estimates of groundwater volume, annual water renewal and turnover, and concentrations and annual discharge of dIC and 
dOC.

Depth (m) Mean age (yr) Renewal (%/yr) Volume (km3) Discharge (km3 yr−1) DIC (mg L−1) DOC (mg L−1) C discharge (Tg yr−1)
0–10 6 16.173 28 646 4633 35.5 8.8 205.3
10–20 6 15.812 25 961 4105 34.9 4.9 163.4
20–30 10 9.610 25 885 2488 35.1 4.7 99.0
30–40 14 7.046 25 808 1819 36.8 4.4 74.9
40–50 24 4.210 25 732 1083 41.0 4.0 48.7
50–60 34 2.939 25 656 754 42.9 3.9 35.3
60–70 57 1.768 25 581 452 43.6 4.0 21.6
70–80 120 0.831 25 505 212 43.4 3.7 10.0
80–90 143 0.699 25 430 178 43.2 3.4 8.3
90–100 325 0.307 25 355 78 42.9 3.3 3.6
100–110 499 0.201 25 280 51 41.8 3.2 2.3
110–120 722 0.139 25 206 35 41.2 2.8 1.5
120–130 927 0.108 25 132 27 40.5 2.5 1.2
130–140 1478 0.068 25 057 17 39.7 2.5 0.7
140–150 2597 0.039 24 984 10 39.0 2.0 0.4
150–160 2625 0.038 24 910 9 38.7 2.0 0.4
160–170 3276 0.031 24 836 8 38.2 2.0 0.3
170–200 2984 0.034 74 071 25 37.6 2.0 1.0
200–250 12 516 0.008 122 002 10 36.1 2.1 0.4
250–300 14 441 0.007 384 363 27 34.6 2.2 1.0
300–350 13 867 0.007 118 452 9 33.5 2.2 0.3
350–400 17 477 0.006 116 716 7 32.7 2.2 0.2
400–450 23 142 0.004 115 006 5 32.3 2.5 0.2
450–500 30 083 0.003 113 320 4 32.3 2.5 0.1
500–800 96 506 0.001 645 883 7 36.8 1.8 0.3
800–2000 1 444 965 0.000 2 076 113 1 28.2 2.4 0.0

total 16 051 680.3
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19 Tg of C to surface waters annually. Unless this growing 
human withdrawal for domestic, industrial, and agricul-
tural use is compensated for by reduced natural ground-
water discharge, human use already releases additional 
C equivalent to 10% of annual marine C sequestration 
(IPCC 2013). Human withdrawal of water might there-
fore be considered another aspect of global change that 
could potentially alter the size of the groundwater pool 
and atmospheric CO2.

Groundwater is a pool that stores and releases substan-
tial amounts of C and thus is valuable to consider in global 
budgets and analyses of inland water functions. Here we 
believe are the first estimates of the size of the global 
groundwater pool and the rate of discharge of groundwa-
ter DOC and DIC. As noted elsewhere (Downing 2009), 
these first-order global estimates are often made with an 
unestimated degree of error. We have tried to be con-
servative in the estimate of groundwater volume to avoid 
upscaling to unrealistically high estimates of groundwater 
C and C discharge. This new estimate of global ground-
water C and C discharge will be improved when updated 
assessments of the global size of the whole groundwater 
pool have been made and science verifies that the global 
concentrations of groundwater DOC and DIC are similar 
to those found across our region.
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